Feature sampling and partitioning for visual vocabulary generation on large action classification datasets
نویسندگان
چکیده
The recent trend in action recognition is towards larger datasets, an increasing number of action classes and larger visual vocabularies. State-of-the-art human action classification in challenging video data is currently based on a bagof-visual-words pipeline in which space-time features are aggregated globally to form a histogram. The strategies chosen to sample features and construct a visual vocabulary are critical to performance, in fact often dominating performance. In this work we provide a critical evaluation of various approaches to building a vocabulary and show that good practises do have a significant impact. By subsampling and partitioning features strategically, we are able to achieve state-ofthe-art results on 5 major action recognition datasets using relatively small visual vocabularies.
منابع مشابه
Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملA bag-of-words equivalent recurrent neural network for action recognition
The traditional bag-of-words approach has found a wide range of applications in computer vision. The standard pipeline consists of a generation of a visual vocabulary, a quantization of the features into histograms of visual words, and a classification step for which usually a support vector machine in combination with a non-linear kernel is used. Given large amounts of data, however, the model...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1405.7545 شماره
صفحات -
تاریخ انتشار 2014